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1 Motivation for the Project and Hopes for Out-
come

The primary aim of this project was to successfully read and utilise listmode
data from the Siemens Biograph Vision and Siemens Biograph Vision Quadra
scanners. Using phantom or patient data from the University Medical Centre
Groningen, the goal was to generate data necessary for developing motion de-
tection and motion tracking algorithms. One potential candidate for motion
detection explored was Bottom-Up Segmentation (BUS), which could be used
with listmode data to achieve high temporal and spatial resolution in motion
detection.

2 Summary of Proposal and Achievements

In the initial project proposal (Sec 6), we outlined the following key goals:

1. Enable listmode reconstruction for Siemens Biograph Vision and Quadra.

2. Reconstruct patient data using STIR.

3. Implement motion detection using change point detection techniques.

We also defined the expected outcomes:

1. Successful reconstruction of Siemens Biograph Vision and Quadra list-
mode data.

2. Implementation of motion detection, data framing, and motion-compensated
image reconstruction using listmode on a high-performance computer.

3 Summary of Project Output

The output of this project has been twofold:

• Successfully reading Siemens Vision non-Time-of-Flight (non-TOF) list-
mode data.

• Evaluating the effectiveness of Bottom-Up Segmentation, a statistical method
from the change point detection family, for identifying time points at which
motion occurred.

3.1 Reading Siemens Vision non-TOF Listmode Data

We successfully decoded the Siemens Vision non-TOF listmode data (see Section
?? for technical details) using GATE simulation. By emitting photons into two
known block pairs, we were able to map Siemens listmode variables into STIR’s
detector coordinate system. The output from STIR reconstruction of a Hoffman
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phantom closely matched the reconstruction from e7tools, with minor differences
such as:

1. Axis flips.

2. Increased noise due to the absence of TOF data.

This process now enables patient data reconstruction, although time constraints
prevented further investigation in this area.

3.2 Motion Detection using Bottom-Up Segmentation

We aimed to use Vision listmode data for automatic motion detection and fram-
ing. However, due to the complexity of decoding the Vision listmode and the
time spent on that task, we were unable to fully implement motion detection
on this scanner. Nevertheless, we achieved promising preliminary results by
applying the Bottom-Up Segmentation algorithm to a dataset from a different
PET scanner.

Simulation results demonstrated that the Bottom-Up Segmentation algo-
rithm is highly sensitive to motion, detecting displacements as small as 2mm
during 10 seconds of no motion, and displacements as small as 3mm during
shorter intervals of 4-6 seconds. For more details, refer to ”Rigid Motion De-
tection for Abrupt Motion in FDG Brain PET Imaging” in Appendix 3.

4 Limitations and Further Steps

Unfortunately, we were unable to access Siemens Quadra listmode data, as it
is confidential and not publicly available. However, the code and experiments
developed in this project can be applied to Quadra data in the future.

In conclusion, while we were unable to perform motion detection, tracking,
and correction on Vision and Quadra listmode data as initially hoped, we did
successfully implement these processes on a different PET scanner. Given the
ability to read Vision and Quadra listmode data, the pipeline we developed
should be applicable. Limited time prevented us from fully integrating the two
parts of the project.

5 Final Reflections and Future Directions

Overall, the project was a success. Although we did not achieve all the origi-
nal goals—such as reading Siemens Quadra listmode data or developing a novel
motion tracking method—we did achieve significant milestones, including de-
coding Siemens Vision non-TOF listmode and evaluating a potential motion
detection algorithm. The next logical step would be to apply the motion detec-
tion algorithm to Vision listmode data from phantom and patient studies for
experimental validation.
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CCP-PETMR Funded Researcher Exchange 
Application 

 

Name: Viet Dao (mm16vd@leeds.ac.uk) 

Supervisors: Charalampos (Harry) Tsoumpas, Robert G. Aykroyd. 

Institution: University of Leeds, West Yorkshire, United Kingdom. 

Host Institution: University Medical Centre Groningen (UMCG), Groningen, Netherlands. 

Introduction and Purpose: University Medical Centre Groningen (UMCG) has the Siemens Biograph 
Vision and Siemens Biograph Vision Quadra installed and we wish to bring this to Software for 
Tomographic Image Reconstruction (STIR). Further, STIR has motion compensated image reconstruction 
(MCIR) but unfortunately no motion detection and motion tracking. This is a feature we wish to bring to 
STIR to complete the motion detection, tracking and correction hence allowing users to perform data 
driven motion correction right out of the box. 

Project Goals / Activities: The project goals are in this order: 

1. Enable listmode reconstruction for Siemens Biograph Vision and Quadra in STIR. 
2. Reconstruct patient data that has motion in STIR. 
3. Implement motion detection using change point detection. 
4. Perform motion tracking using a novel method. 

Available Data: 

1. Phantom listmode data from Siemens Biograph Vision and Vision Quadra (to be made available). 
2. Patient data with motion (cannot be made available due to privacy regulations). 

Main Output: 

1. Reconstruction of Siemens Biograph Vision and Siemens Biograph Quadra data. 
2. Perform motion detection, data framing, and motion compensated image reconstruction using 

listmode on a high performance computer.  

Benefits to CCP: The study will add two additional scanners to the STIR’s repository with analysis of STIR 
compared to the commercial software Siemens e7 toolkit. Further any code produced (motion detection 
and tracking) from this project is intended for contribution to the open-source STIR. 

Cost: We kindly request for £9,000 for the duration of the stay in the Netherlands. This will cover the 
rent and utilities for 9 months from October 2023 to June 2024, which cost £992 a month (1150 Euros). 
The cost of food, travel, and other expenses will be covered by Viet. 

Support from Host Institution: I, Charalampos Tsoumpas, am happy to accept Vet’s application to work 
in University Medical Centre Groningen in the Netherlands to implement Siemens Biograph Vision and 



1

Rigid Motion Detection for Abrupt Motion in FDG
Brain PET Imaging

V.Dao, R.G.Aykroyd, E.Mikhaylova, C. Tsoumpas

Index Terms—PET, motion detection, change point detection,
bottom-up segmentation

I. INTRODUCTION

DATA-driven methods (DDMs) for motion tracking have
been gaining attention. One standard DDM for motion

tracking is to perform reconstruction every 3-5 seconds of
scanning time and produces a stack of 3D image. The images
are registered to the reference frame and this generates trans-
formation matrices for motion correction. This is often called
frame based motion tracking methods [1] [2] [3]. Another
method to avoid reconstruction is to calculate motion from
sinogram [4]. While effective in reducing motion artifacts,
frame-based methods do not address intra-frame motion mean-
ing motion artefact is still present. It is better to use listmode
for motion detection and time segmentation. In this work, we
perform motion detection and frame estimation for rigid abrupt
motion.

II. MATERIALS AND METHODS

A. Scanner
Positrigo’s NeuroLF is a dedicated brain positron emis-

sion tomography (PET) scanner (no CT or MR) with: 8
sides, 48 rings, and 256 detectors per ring. Each detector
has 3.2 × 3.2 × 10 mm3. This produces an image of
161 × 161 × 95 voxels with a size of 1.6565 mm3 with a
spatial resolution of 2-3 mm at centre of field-of-view (FOV)
and 4-5 at edge of FOV.

B. Data Collection
In this investigation, we utilised patient data previously

acquired from the Siemens Biograph Vision Quadra. The
patient was administered with FDG and underwent scanning
for a duration of one hour. From reconstructed dynamic image,
we extracted a single frame with minimal motion, which serves
as our input data for voxelised Monte Carlo simulation. The
patient data has been anonymised, retaining only the images
for analysis. The patient images are presented in Figure 1.

This single frame is then fed into GATE using the NeuroLF
geometry and the motion is perform using Python using rigid
motion (translation and rotation) for each 0.1 seconds. This
allows a discrete approximation to continuous motion. Finally,
the ROOT is converted into listmode.

V.Dao, R.G.Aykroyd, C.Tsoumpas are with Department of Statistics, Uni-
versity of Leeds, Leeds, West Yorkshire, UK.

E.Mikhaylova is image research lead at Positrigo, Zurich, Switzerland
V.Dao and C.Tsoumpas is with Department of Nuclear Medicine and

Molecular Imaging, University Medical Center Groningen, University of
Groningen, Groningen, The Netherlands.

Fig. 1. Images of the patient from axial (top, left to right indicating inferior
to superior), coronal (middle, left to right indicating anterior to posterior),
and sagittal (bottom, left to right indicating right to left) perspectives. The
frames are taken at intervals of every 10 slices, with each slice being 1.65mm
isotropic.

C. Convert Listmode to Pseudo-Displacement Time Series

Each coincidence in the data represents a Line of Re-
sponse (LOR), comprising a pair of detector indices, namely
{detA, ringA, layerA} and {detB , ringB , layerB}, along
with a timestamp in integer format. The physical location
of each detector is denoted by coordinates {xA, yA, zA} and
{xB , yB , zB}. Utilising the midpoint of each LOR, we can
derive a 3D space coordinate.

D. Change Point Detection & Bottom-Up Segmentation

Consider the following problem represented as {(ti, yti)
|i = 1, ..., n}, where T = {ti|i ∈ U ⊆ {1, ..., k}}}. The
set U is called the ”index splitting” set while T serves as the
”time splitting” set, dividing the data into k + 1 segments,
assuming the existence of k points that induce changes in our
time series. The objective, using the time series, is to estimate
the set T . This estimation can be framed as a minimization
problem, expressed as follows:

L(T |y, t) =
|T |∑

i=1

C
(
yj , f(tj)|tj ∈ [ti−1, ti)

)
+ λ · R(T ) (1)

Here, C denotes the cost function quantifying the fit between
the data y(t) and the modeled counterpart ŷj = f(tj) within
the interval [ti−1, ti), while R(T ) represents the penalty on
the ”time splitting” set, and λ determines the strength of this
penalty. Unfortunately, due to the discreteness of set T , direct
differentiation of L to find the minimum point is not possible,
even with a convex function C. Therefore, an iterative method
is necessary.

The Bottom-Up Segmentation [7] method is an iterative
approach designed for cases where the number of change
points (k) is unknown. It can be employed in both online
and offline settings, allowing for live segmentation or post-
recording analysis. To implement the bottom-up segmentation,
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we commence with the maximum number of segments, rep-
resented as:

T = {ti|i ∈ U}, U = {1, ..., n}, Time Splitting Set

This implies the presence of n change points and n + 1
segments, with the associated cost function defined as:

C(y(t), f(y(t))) = ||y − f(y)||2, Cost function

f(y) =
1

n

i∑

j=i−1

ytj , Segment mean

λ · R(T ) = σ · |T | , Penalisation.

In this context, |T | represents the cardinality (size) of the ’time
splitting’ set T . The goal of this loss function is to optimise the
mean fit within each segment while simultaneously minimising
the total number of segments. For instance, maximising the
size of T reduces C but increases R(T ), which is generally not
optimal. Conversely, minimising T (to an empty set, implying
a single segment) minimises R(T ) to zero but both extremes
are not ideal. The Bottom-Up Segmentation (BUS) method
iteratively evaluates each index ti ∈ T , assessing the effect of
removing its associated change point. For this study, we will
utilize an open-source Python software called Rupture [8] for
segmentation of time.

E. Controlled experiment

To test the algorithm we use a few controlled experiment.
The first experiment is fixed the time point which motion
occurs (every 10 seconds) but the amount of displacement
varies (3mm, 2mm, 1mm, 0.5mm) and observed the minimum
consistent detection of displacement. The second we perform a
fixed incremental displacement (of +3mm) for a varied interval
(10s, 8s, 6s, 4s, 2s) between abrupt displacement and observed
the minimum consistent detection of motion time points.

III. RESULTS

TABLE I
SPATIAL SENSITIVITY

time(s) 3mm 2mm 1mm 0.5mm
10 10.0 10.0 - -
20 20.0 18.8 21.3 -
30 30.0 30.1 - -
40 40.0 41.4 41.4 40.0
50 50.0 50.2 - -
60 59.8 60.0 60.0 59.9
False neg(%) 0 0 50 66.7
RMSE(s) 0.24 1.87 NA NA

Estimate time point for motion of 0.5mm, 1mm,
2mm, 3mm of displacement at fixed time inter-
val (10s). ”-” represent missing data i.e. false
negative while ”NA” is not application because
calculation can’t be performed due to missing
data.

From Table I, we observed the that we can detect motion
of 2mm displacement for abrupt motion at every 10 seconds
consistently. Beyond 2mm there are false negative which may
cause motion artefact but with the caveat that below 2mm is

TABLE II
TEMPORAL SENSITIVITY

displacement(mm) 10s 8s 6s 4s 2s
3 10.0 8.9 5.0 3.7 3.1
6 18.7 17.2 11.9 8.1 4.4
9 29.9 23.9 16.9 11.8 -
12 40.5 32.1 23.7 16.2 8.1
15 49.2, 49.8 41.0 29.3 - -
18 59.9 47.9 35.5,36.0 23.9 12.0
False neg(%) 0 0 0 16.7 33.3
False pos(%) 16.7 0 16.7 0 0
RMSE(s) 1.6 1.8 1.8 NA NA

Estimate time point for motion at fixed 3mm of displacement
between varied duration (e.g. for second column, from 0-10
seconds there is 3mm of displacement, 10-20 there is 6mm of
displacement etc... ”-” represent missing data i.e. false negative,
multiple entries in a cell means false positives while ”NA” is
not application because calculation can’t be performed due to
missing data.

beyond the spatial resolution. The root mean squared error for
the time point of motion increased as displacement decreases.

From Table II, we observe abrupt motion of fixed 3mm
can be detected down to 6 seconds (duration between abrupt
motion) consistently. While lower means the increase in false
negative. Similarly, the RMSE increased as the duration be-
tween motion decrease.

A. Discussion

Overall, the listmode tracking provide excellent spatial
sensitivity when it comes to motion detection (up to 2mm
which is smaller than spatial resolution of scanner) but the
temporal sensitivity is lacking with only consistent detection
of abrupt motion with time interval of 6 seconds. In practice, it
is possible patients will move more than 3mm over a duration
less than 6 seconds and so the question is: is it possible to
increase temporal resolution for motion detection? It is likely
that there is a trade-off between spatial and temporal sensitivity
but the algorithm’s spatial sensitivity should be tune to match
the spatial resolution of the scanner which fixes the temporal
resolution. This potentially might be the temporal limit of
listmode method.
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